Abstract

A design of coaxial hollow nanocables of carbon nanotubes and silicon composite (CNTs@Silicon) was presented, and the lithiation/delithiation behavior was investigated. The FIB-SEM studies demonstrated hollow structured silicon tends to expand inward and shrink outward during lithiation/delithiation, which reveal the mechanism of inhibitive effect of the excessive growth of solid-electrolyte interface by hollow structured silicon. The as-prepared coaxial hollow nanocables demonstrate an impressive reversible specific capacity of 1150 mAh g-1 over 500 cycles, giving an average Coulombic efficiency of >99.9%. The electrochemical impedance spectroscopy and differential scanning calorimetry confirmed the SEI film excessive growth is prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.