Abstract

For pathogenic bacteria, host-derived heme represents an important metabolic cofactor and a source for iron. However, high levels of heme are toxic to bacteria. We have previously shown that excess heme has a growth-inhibitory effect on the Gram-positive foodborne pathogen Listeria monocytogenes, and we have learned that the LhrC1-5 family of small RNAs, together with the two-component system (TCS) LisRK, play a role in the adaptation of L. monocytogenes to heme stress conditions. However, a broader knowledge on how this pathogen responds to heme toxicity is still lacking. Here, we analyzed the global transcriptomic response of L. monocytogenes to heme stress. We found that the response of L. monocytogenes to excess heme is multifaceted, involving various strategies acting to minimize the toxic effects of heme. For example, heme exposure triggers the SOS response that deals with DNA damage. In parallel, L. monocytogenes shuts down the transcription of genes involved in heme/iron uptake and utilization. Furthermore, heme stress resulted in a massive increase in the transcription of a putative heme detoxification system, hrtAB, which is highly conserved in Gram-positive bacteria. As expected, we found that the TCS HssRS is required for heme-mediated induction of hrtAB and that a functional heme efflux system is essential for L. monocytogenes to resist heme toxicity. Curiously, the most highly up-regulated gene upon heme stress was lmo1634, encoding the Listeria adhesion protein, LAP, which acts to promote the translocation of L. monocytogenes across the intestinal barrier. Additionally, LAP is predicted to act as a bifunctional acetaldehyde-CoA/alcohol dehydrogenase. Surprisingly, a mutant lacking lmo1634 grows well under heme stress conditions, showing that LAP is not required for L. monocytogenes to resist heme toxicity. Likewise, a functional ResDE TCS, which contributes to heme-mediated expression of lmo1634, is not required for the adaptation of L. monocytogenes to heme stress conditions. Collectively, this study provides novel insights into the strategies employed by L. monocytogenes to resist heme toxicity. Our findings indicate that L. monocytogenes is using heme as a host-derived signaling molecule to control the expression of its virulence genes, as exemplified by lmo1634.

Highlights

  • Listeria monocytogenes is a Gram-positive, facultative anaerobe, closely related to other bacterial species such as Bacillus, Clostridium, Enterococcus, Streptococcus, and Staphylococcus (Vazquez-Boland et al, 2001)

  • To further analyze the most prominent effects of heme stress, we focused on the genes that were at least fourfold upor down-regulated by heme, corresponding to 110 and 297 genes, respectively (Supplementary Table S3)

  • Very little is known about how L. monocytogenes avoids heme-mediated toxicity, and our study focused on understanding how the transcriptome of this pathogenic bacterium is affected upon exposure to excess heme

Read more

Summary

Introduction

Listeria monocytogenes is a Gram-positive, facultative anaerobe, closely related to other bacterial species such as Bacillus, Clostridium, Enterococcus, Streptococcus, and Staphylococcus (Vazquez-Boland et al, 2001). The TCS HssRS (Heme-Sensor System) responds to heme exposure and activates the expression of the Heme Regulated Transporter, HrtAB, which protects the bacteria from heme toxicity by exporting heme (Torres et al, 2007; Stauff and Skaar, 2009b) Orthologs of this system have been identified and studied in other Gram-positive bacteria including Bacillus anthracis (Stauff and Skaar, 2009a), B. thuringiensis (Schmidt et al, 2016), Lactococcus lactis (Pedersen et al, 2008; Lechardeur et al, 2012), Streptococcus agalactiae (Fernandez et al, 2010; Joubert et al, 2017), Corynebacterium diphtheria and Group A Streptococcus (Sachla et al, 2014), suggesting that specific mechanisms for resisting heme stress are a common requirement for these bacteria. The HssRS system and HrtAB exporter are conserved in L. monocytogenes as well (Torres et al, 2007); their roles in dealing with heme toxicity remain to be clarified

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.