Abstract

Bacteria withstand starvation during long-term stationary phase through the acquisition of mutations that increase bacterial fitness. The evolution of the growth advantage in stationary phase (GASP) phenotype results in the ability of bacteria from an aged culture to outcompete bacteria from a younger culture when the two are mixed together. The GASP phenotype was first described for Escherichia coli, but has not been examined for an environmental bacterial pathogen, which must balance long-term survival strategies that promote fitness in the outside environment with those that promote fitness within the host. Listeria monocytogenes is an environmental bacterium that lives as a saprophyte in soil, but is capable of replicating within the cytosol of mammalian cells. Herein, we demonstrate the ability of L. monocytogenes to express GASP via the acquisition of mutations during long-term stationary growth. Listeria monocytogenes GASP occurred through mechanisms that were both dependent and independent of the stress-responsive alternative sigma factor SigB. Constitutive activation of the central virulence transcriptional regulator PrfA interfered with the development of GASP; however, L. monocytogenes GASP cultures retained full virulence in mice. These results indicate that L. monocytogenes can accrue mutations that optimize fitness during long-term stationary growth without negatively impacting virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.