Abstract

Liquid scintillation counting of radionuclides emitting beta radiation with Emax>2 MeV has been investigated. Fluor volume effects were similar to those for low energy beta radiation, and pulse height spectra broadened in a predictable manner with no pulse clipping up to 4.913 MeV. Large changes in sample channels ratio due to color quenching resulted in progressively smaller losses of counting efficiency as beta energy increased. Counting efficiences were estimated to be near 100 percent for34Clm,36Cl,32P and38Cl. Cerenkov counting of38Cl by liquid scintillation counter was volume dependent for both counting efficiency and pulse height spectrum. Counting efficiencies for34Clm,36Cl,32P and38Cl were estimated to be 57.0, 7.5, 42.7 and 66.3%, respectively. Pulse height spectra were shifted to greater pulse heights as a function of beta Emax, supporting the possibility of energy discrimination for beta emitters by Cerenkov pulse height spectrum analysis. The advantage of singles Cerenkov counting over coincidence Cerenkov counting was greatest for36Cl and least for38Cl; this advantage was amplified more for samples of36Cl which had been color quenched than for similarly quenched samples of38Cl or32P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.