Abstract

The aldol condensation reactions of furfural/hydroxymethylfurfural (furfurals) with acetone/propanal in water–methanol solvents were studied over the solid base catalysts MgO–ZrO2, NaY and nitrogen-substituted NaY (Nit-NaY). The reactions were conducted at 120°C and 750psig of He in batch reactors. Nit-NaY exhibited catalytic activity for aldol condensation comparable to MgO–ZrO2 and much higher than that of NaY, indicative of the increased base strength after replacing the bridging oxygen with the lower electronegativity nitrogen over Nit-NaY. The aldol condensation of furfurals with acetone produces two different products, the monomer and the dimer. The monomer is formed from reaction of furfurals with acetone. The dimer is formed from reaction of the monomer with furfurals. MgO–ZrO2 had a higher selectivity towards dimer formation. In contrast, Nit-NaY was more selective towards the monomer product due to the cage size in the FAU structure, indicating that Nit-NaY is a shape selective base catalyst. Increasing the water concentration in the feed solution or increasing the feed concentration led to both increased catalytic activity and dimer selectivity. The Nit-NaY catalyst was not stable and lost catalytic activity when recycled due to leaching of the framework nitrogen. Different characterization techniques, including XRD, high resolution Ar adsorption isotherm, basic sites titration, CO2 TPD-MS, TGA and 29Si SP MAS NMR, were used here to characterize the fresh and spent catalysts. The results show that Nit-NaY maintains only part of the FAU-type crystal structure. Furthermore, the base strength over Nit-NaY was found to be between that of Mg2+–O2− pair and Mg(OH)2. The reaction mechanism over Nit-NaY was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.