Abstract
A liquid metal synthesis process provides a new low energy pathway avenue to manufacture various low-dimensional nanomaterials in order to improve the mechanical properties of polymer composites. This paper presents an investigation of the strengthening and toughening performances of two-dimensional platelets of boehmite (Îł-AlO(OH)) and alumina (Îł-Al2O3). Using a liquid metal alloy reaction process, two-dimensional metal oxide hydroxide and oxide platelets were synthesised and then used for reinforcing epoxy polymer composites at different weight fractions up to 10%. Both boehmite and alumina platelets increased the tensile modulus, yield stress and fracture toughness of the epoxy composite by up to 40%, 35% and 320%, respectively. Of the two materials, the boehmite platelets were more effective than the alumina platelets in increasing the tensile modulus (up to 27%) and ultimate strength (up to 14%) of the epoxy. In contrast, the alumina platelets promoted a 50% greater improvement to the mode I fracture energy when compared to using boehmite platelets. The primary mechanisms responsible for the measured property improvements are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.