Abstract

Solid-state sodium metal batteries have attracted wide attention due to their high energy density, remarkable safety, and abundant sodium resources. However, the growth of Na dendrites and poor interfacial contact between Na metal anode and Na3Zr2Si2PO12 (NZSP) solid-state electrolytes severely limit their practical application. Herein, a wettable liquid metal (GaIn) interlayer significantly reduces the interfacial resistance and avoids the formation of voids at the Na/NZSP interface. Moreover, the Ga4Na and NaIn alloys at the interface caused by the spontaneous reaction of GaIn with Na metal enhance the bond of NZSP with Na anode, which provides a continuous Na+ diffusion pathway and homogeneous Na+ flux to suppress Na dendrite growth. The symmetric cell can cycle stably for over 6500h at 0.05mA cm-2 and over 3000h at 0.1mA cm-2, with a critical current density of 0.8mA cm-2 at 25°C, and the interfacial resistance is significantly reduced to 21.6 Ω from 1095.1 Ω. The full cell coupled with NaNi1/3Fe1/3Mn1/3O2 also shows outstanding cycling performance, maintaining 85.1% capacity after 100 cycles at 0.5 C. This work demonstrates that the liquid metal interlayer has a large potential for the practical application of solid-state metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.