Abstract

Increasing attention has been paid to fabricate multifunctional stabilizers of liquid marbles for expanding their application. Here, a kind of hydrophobic cyclomatrix polyphosphazene particles (PZAF) were facilely prepared using a one-step precipitation polycondensation of hexachlorocyclotriphosphazene and 4,4'-(hexafluoroisopropylidene)diphenol, and their ability to stabilize liquid marbles was first investigated. The Ag nanoparticle-decorated PZAF particles (Ag/PZAF) were then fabricated by an in situ reduction of silver nitrate onto PZAF particles and used to construct catalytic liquid marbles. The results revealed that the reduction of methylene blue (MB) in aqueous solution by sodium borohydride could be highly efficiently catalyzed in the catalytic liquid marbles, even with a large volume. An excellent cycle use performance of the catalytic liquid marbles without losing catalytic efficiency was also present. The high catalytic activity is mainly attributed to the uniform immobilization of Ag nanoparticles onto PZAF particles and the adsorption behavior of PZAF particles toward MB, which may play an effect on allowing high catalytic surface area and effective accelerating the mass transfer of MB to the Ag catalytic active sites, respectively. Therefore, the combination of Ag nanoparticles with PZAF particles has been demonstrated clearly to be a facile and effective strategy to obtain the functional stabilizer for preparing the catalytic liquid marbles as promising miniature reactors used in heterogeneous catalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.