Abstract

We describe a monolithic approach to fabricating large-scale arrays of high-finesse and low-mode-volume Fabry-Perot microcavities with open access to the air core. A stress-driven buckling self-assembly technique was used to form half-symmetric curved-mirror cavities, and a dry etching process was subsequently used to create micropores through the upper mirror. We show that the cavities retain excellent optical properties, with reflectance-limited finesse ∼2500 and highly predictable Laguerre-Gaussian modes. We furthermore demonstrate the ability to introduce liquids into the cavity region by microinjection through the pores. Applications in sensing, optofluidics, and cavity quantum electrodynamics are envisioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.