Abstract

In a finite temperature Thomas-Fermi framework, we calculate density distributions of hot nuclei enclosed in a freeze-out volume of few times the normal nuclear volume and then construct the caloric curve, with and without inclusion of radial collective flow. In both cases, the calculated specific heats C ν show a peaked structure signalling a liquid-gas phase transition. Without flow, the caloric curve indicates a continuous phase transition whereas with inclusion of flow, the transition is very sharp. In the latter case, the nucleus undergoes a shape change to a bubble from a diffuse sphere at the transition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.