Abstract
We study the effects of a repulsive three-body interaction on a system of trapped ultra-cold atoms in Bose-Einstein condensed state. The stationary solutions of the corresponding $s-$wave non-linear Schr\"{o}dinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a new characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-square-radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.