Abstract

A combined theoretical and experimental study of the influence of controllable engineering parameters, including surface PTFE (Teflon™) coverage (ranging from 5 to 20 wt.%), channel geometry, droplet chord length and height, and operational air flow rate, on liquid droplet deformation at the interface of the diffusion media (DM) and the gas flow channel was performed. The theoretical model reasonably predicts the measured contact angle hysteresis and identifies conditions under which the droplet tends toward an unstable state. The results presented in this study indicate that operational conditions, droplet height, chord length, channel size and level of surface hydrophobicity of the DM directly affect the droplet instability. Based on the analytical force balance model, the critical Reynolds number at which a droplet of given dimensions tends towards instability (i.e. may be removed from the channel) is predicted. Experimental data in both the stable and unstable regions as defined by the critical Reynolds number curve generally corresponds to the stability predictions. Empirical correlations relating surface tension and DM PTFE content were developed. At high flow rates, the surface hydrophobicity of the DM surface enhances efficacy of droplet removal, and may help to prevent local channel flooding. However, at low flow rates, hydrophobicity of the DM surface has only a minimal impact on efficacy of droplet removal and therefore high PTFE content may not be necessary, or desirable, since it also increases the electrical resistance of the system. It is also suggested that for constant air velocity and droplet size and shape, reduced channel height is preferred for effective water droplet removal where practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.