Abstract

Lipoxin A4 (LXA4), a potent antioxidant and anti-inflammation mediator, protects brains against cerebral ischemia/reperfusion (I/R) injury in vivo. However, few reports concern its function on astrocytes during cerebral I/R injury. The pathogenesis of cerebral I/R injury involves oxidative stress caused by reactive oxygen species (ROS). Upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) is generally considered to reduce oxidative stress. Nrf2 can induce heme oxygenase-1 (HO-1) expression and glutathione (GSH) release to combat increased oxidative stress. We investigated the effects of LXA4 on astrocytic cell damage, the production of ROS, and Nrf2 pathway, especially on HO-1 expression and GSH release in cultured cortical astrocytes exposed to oxygen-glucose deprivation (OGD)/recovery (OGDR) insults. Primary astrocytes were subjected to a 4-h OGD, followed by 8-h recovery. Cell viability, the production of ROS, and GSH release were measured. Furthermore, Nrf2, HO-1, and p62 expression levels were determined by Western blot. Moreover, Nrf2 location was studied by immunofluorescence staining. Treatment of LXA4 attenuates OGDR-induced cell damage and the production of ROS in a concentration-related manner. LXA4 induced Nrf2 expression and its nuclear translocation, as well as HO-1 expression and GSH release. Moreover, LXA4 induced the excess p62 accumulation. These results indicate that LXA4 can effectively protect against OGDR-induced cell damage in astrocytes, and activation of Nrf2 pathway to reduce oxidative stress may be involved in its protective effects. p62 accumulation induced by LXA4 may be closely related to Nrf2 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.