Abstract

Lipoteichoic acid (LTA) is an important cell wall polymer found in gram-positive bacteria. Although the exact role of LTA is unknown, mutants display significant growth and physiological defects. Additionally, modification of the LTA backbone structure can provide protection against cationic antimicrobial peptides. This review provides an overview of the different LTA types and their chemical structures and synthesis pathways. The occurrence and mechanisms of LTA modifications with D-alanyl, glycosyl, and phosphocholine residues will be discussed along with their functions. Similarities between the production of type I LTA and osmoregulated periplasmic glucans in gram-negative bacteria are highlighted, indicating that LTA should perhaps be compared to these polymers rather than lipopolysaccharide, as is presently the case. Lastly, current efforts to use LTAs as vaccine candidates, synthesis proteins as novel antimicrobial targets, and LTA mutant strains as improved probiotics are highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.