Abstract

Smooth muscle proliferation leading to excessive intimal thickening is of prime importance in atherosclerosis. Human arterial smooth muscle cells (SMCs) and human lung fibroblasts are rather insensitive to mitogens under plasma-free conditions in vitro. This prompted us to study the distribution and nature of the growth-promoting material in human plasma. SMCs were obtained from explants of human aortic media. More than 80% of the growth-promoting activity of plasma was present in the lipoprotein (LP) fraction. The growth-promoting capacity of the different LPs was determined on fractions isolated with density gradient ultracentrifugation. Cytotoxic effects appeared if low-density lipoprotein (LDL) was not protected from oxidation and were aggravated with platelet-derived growth factor (PDGF)-BB. Very-low-density lipoprotein, LDL, and high-density lipoprotein (HDL) stimulated DNA replication and cell growth by themselves. The stimulation was considerable and equaled that obtained with PDGF-BB only. It was strongly increased in the presence of PDGF-BB. The effect on SMCs was not uniform for subfractions of HDL. A light portion inhibited growth in the absence but strongly stimulated it in the presence of PDGF-BB. For fibroblasts, HDL subfractions had a uniform effect, suggesting a cell type-dependent difference. Addition of cholesterol or essential fatty acids did not induce a growth response similar to that of LPs. This speaks strongly against mere nutritional supplementation as responsible for the mitogenic and growth-promoting effect of LPs and suggests that the effect may be more specific. Disordered LP metabolism is strongly related to atherosclerosis, and certain LPs have a potential role for the deposition of lipids. In addition to this, the distinct mitogenic and growth-stimulating effect of LPs by themselves, as demonstrated in the present report, suggests a mechanism by which intimal thickening, which is a prerequisite for atherosclerosis, may be induced. The pronounced amplification of this effect with PDGF-BB, a substance that also has been implicated in atherogenesis, might promote growth leading to the excessive intimal thickening in the atherosclerotic plaque.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.