Abstract

IntroductionSepsis survivors are at higher risk for cardiovascular events. Lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4) in sepsis. Activation of TLR4 modulates vascular smooth muscle cells (VSMCs) phenotype and contributes to cardiovascular changes after sepsis. AimInvestigate changes in VSMCs phenotype caused by LPS-induced TLR4 activation. MethodsRat VSMCs were incubated with LPS. Two incubation conditions were used in cell contraction and migration assays: acute stimulation — LPS stimulus was initiated at the beginning of the assay and maintained throughout; and preconditioning — LPS stimulation was applied prior to the assay then discontinued. Nitric oxide (NO) production, mRNA expression of cytokines and phenotype markers, and interleukin (IL)-6 production were evaluated. Key findingsLPS increased gene expression of IL-1β, IL-6, TNFα and MCP-1 (p < .001), of secretory phenotype markers collagen and vimentin (p < .0479) and of the contractile marker smooth muscle 22α (SM22α) (p = .0067). LPS exposure increased IL-6 secretion after 24 and 48 h (p < .0001), and NO at 8 and 24 h (p < .0249) via inducible nitric oxide synthase (iNOS), as demonstrated by a decrease in NO after incubation with aminoguanidine. Acute stimulation with LPS reduced migration and contraction in a NO-dependent manner, while preconditioning with LPS increased both in an IL-6-dependent manner. SignificanceLPS affects VSMCs by modulating their secretory, contractile and migratory phenotypes. LPS acute stimulation of VSMCs promoted a NO-dependent reduction in migration and contraction, while preconditioning with LPS promoted IL-6-dependent increases in migration and contraction, evidencing that VSMCs can present phenotype modifications that persist after sepsis, thereby contributing to postsepsis cardiovascular events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.