Abstract

Lipid-core nanocapsules (LNC) are formed by an organogel surrounded by poly(epsilon-caprolactone) and stabilized by polysorbate 80. LNCs increase the concentration of drugs in the brain after oral or intravenous administration. We proposed to determine whether the drug is released from the LNC to cross the blood brain barrier (BBB) or the drug-loaded LNCs can cross the BBB to release the drug. We synthesized a Rhodamine B-polymer conjugate to prepare a fluorescent-labeled LNC formulation, and intravital microscopy was used to determine the ability of the LNCs to cross the brain barrier using different administration routes in C57BI/6 mice. A glioblastoma model was used to determine the impact of the LNC as a shuttle for treatment. After pial vessel exposure, intense fluorescence was detected inside the vessels 10 min after intravenous or 20 min after intraperitoneal injections of fluorescent-labeled LNC. The fluorescence was observed in the perivascular tissue after 30 and 60 min, respectively. Increased tissue fluorescence was detected 240 min after oral administration. The integrity of the barrier was determined during the experiments. Normal leukocyte and platelet adhesion to the vessel wall indicated that Rhodamine B-labeled LNC did not cause pial vessel alterations. After intravenous or oral administration, Rhodamine B-labeled LNC-containing co-encapsulated indomethacin and indomethacin ethyl ester exhibited similar behavior in pial vessels, being more efficient in the treatment of mice with glioblastoma than indomethacin in solution. Therefore, we demonstrated that LNCs act as drug shuttles through the BBB, delivering drugs in brain tissue with high efficiency and reducing glioblastoma after intravenous or oral administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.