Abstract

Microbubbles are micrometer-size gaseous particles suspended in water, and they are often stabilized by a lipid monolayer shell. Natural microbubbles are found in freshwater and saltwater systems, and engineered microbubbles have a variety of applications in food sciences, biotechnology and medicine. Lipid-coated microbubbles are found to have remarkable stability and mechanical behavior owing to the resistance of the lipid monolayer encapsulation to collapse. The purpose of this review is to tie in recent observations of lipid-coated microbubble dissolution and gas exchange with current literature on the physics of lipid monolayer collapse in the context of lung surfactant. Based on this analysis, we conclude that microbubble shells collapse through the nucleation of microscopic folds, which then catalyze the formation and aggregation of new folds, leading to macroscopic folding events. This process results in a cyclic behavior of crumple-to-smooth transitions, which can be modulated through lipid composition. Eventually, the microbubbles stabilize at 1–2μm diameter, regardless of initial size or lipid composition, and various mechanisms for this stabilization are postulated. Our ultimate goal is to inspire the reader to consider lipid monolayer collapse as the main long-term stabilizing mechanism for lipid-coated microbubbles, and to stimulate the use of microbubbles as a platform for studying monolayer collapse phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.