Abstract

Development of an intelligent and versatile delivery system to achieve tumor-targeted delivery and controlled release of diverse functional moieties is of great significance to realize precise cancer theranostics. In this study, we use pH-dissociable calcium carbonate-polydopamine (pCaCO3) nanocomposites as a template to guide the formation of a lipid bilayer on their surface, yielding lipid-coated pCaCO3 nanoparticles with high loading efficacies towards gadolinium ions (Gd3+), doxorubicin (DOX) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR). The obtained liposomal nanotheranostics show excellent physiological stability and pH-dependent release of DOX and Gd3+; the latter could lead to pH-dependent T1 signal enhancement under magnetic resonance (MR) imaging, as well as efficient photothermal conversion efficacy. Then, we found that tumors in mice with intravenous injection of DiR-DOX-Gd@pCaCO3-PEG could be clearly visualized in a real-time manner by recording their near-infrared (NIR) fluorescence and T1 MR signal. Furthermore, treatment with such liposomal nanotheranostics injection and NIR laser irradiation could enable collective suppression of the growth of 4T1 tumors in Balb/c mice via combined chemo- and photothermal therapies. Therefore, this work highlights the concise preparation of lipid-coated pCaCO3 nanocomposites, which could be utilized for the construction of diverse cancer nanotheranostics by exploiting their versatile loading capacities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.