Abstract
The ion flow through channel proteins embedded in a lipid bilayer membrane can be recorded as an electrical current, enabling biophysical characterization and pharmacological drug screening at a single-channel level. These measurements are challenging because the self-assembled bilayers are fragile and the currents are in the pA–nA range. This concise review introduces the bilayer recording methodology, with an emphasis on the requirements for full electrophysiology assays. The self-assembled lipid bilayer, formed in a ∼100 μm diameter aperture in between two aqueous chambers, is critical. Various approaches to increase the measurement throughput by scaling to aperture arrays are discussed in terms of current-amplifier technology, bilayer stability, ion channel incorporation, system functionality and obtained single-channel data. The various bilayer recording platforms all have advantages and limitations. Combining the strengths of the different platform architectures, for example, the use of shaped apertures, will be essential to realize and also automate parallel ion channel recordings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.