Abstract

BackgroundRapid automatized naming (RAN; naming of familiar items presented in an array) is a task that taps fundamental neurocognitive processes that are affected in a number of complex psychiatric conditions. Deficits in RAN have been repeatedly observed in autism spectrum disorder (ASD), and also among first-degree relatives, suggesting that RAN may tap features that index genetic liability to ASD. This study used eye tracking to examine neurocognitive mechanisms related to RAN performance in ASD and first-degree relatives, and investigated links to broader language and clinical-behavioral features.MethodsFifty-one individuals with ASD, biological parents of individuals with ASD (n = 133), and respective control groups (n = 45 ASD controls; 58 parent controls) completed RAN on an eye tracker. Variables included naming time, frequency of errors, and measures of eye movement during RAN (eye-voice span, number of fixations and refixations).ResultsBoth the ASD and parent-ASD groups showed slower naming times, more errors, and atypical eye-movement patterns (e.g., increased fixations and refixations), relative to controls, with differences persisting after accounting for spousal resemblance. RAN ability and associated eye movement patterns were correlated with increased social-communicative impairment and increased repetitive behaviors in ASD. Longer RAN times and greater refixations in the parent-ASD group were driven by the subgroup who showed clinical-behavioral features of the broad autism phenotype (BAP). Finally, parent-child dyad correlations revealed associations between naming time and refixations in parents with the BAP and increased repetitive behaviors in their child with ASD.ConclusionsDifferences in RAN performance and associated eye movement patterns detected in ASD and in parents, and links to broader social-communicative abilities, clinical features, and parent-child associations, suggest that RAN-related abilities might constitute genetically meaningful neurocognitive markers that can help bridge connections between underlying biology and ASD symptomatology.

Highlights

  • Rapid automatized naming (RAN; naming of familiar items presented in an array) is a task that taps fundamental neurocognitive processes that are affected in a number of complex psychiatric conditions

  • We investigated the coordination of gaze and language during a language processing task, rapid automatized naming (RAN), as a potential mechanism related to the clinical-behavioral features of autism spectrum disorder (ASD) and the broad autism phenotype (BAP)

  • We examine for the first time these gaze variables among parents with and without the BAP, and how their performance may relate to their children’s language and gaze coordination during RAN to assess familiality of RAN to ASD

Read more

Summary

Introduction

Rapid automatized naming (RAN; naming of familiar items presented in an array) is a task that taps fundamental neurocognitive processes that are affected in a number of complex psychiatric conditions. We investigated the coordination of gaze and language during a language processing task, rapid automatized naming (RAN), as a potential mechanism related to the clinical-behavioral features of ASD and the BAP. RAN is a task that taps the fluency of cognitive and linguistic processes underlying complex language-related skills [6] It involves quickly and accurately naming rows of common symbolic (letters/numbers) and non-symbolic (colors/objects) items presented in an array, and draws on a number of linguistic processes (e.g., lexical retrieval and connection of orthographic/written, semantic, and phonological/auditory representations), coordinates visual cues with vocal responses, and utilizes executive functions (e.g., working memory, capacity to maximize speed, regulating attention and avoiding interference between successive items) [7, 8]. Performance on RAN has been linked to a broad network of language-related brain regions (e.g., left-hemisphere language temporal areas (linguistic processes and semantic access), supplementary motor area and pre-motor area (articulation), the supramarginal gyrus (for grapheme-phoneme translation), right cerebellum (motor planning), and the visual cortex) [6, 9, 10] and is a strong predictor of reading skills [11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.