Abstract

The Asian clam, Corbicula fluminea, is among the most pervasive invasive species in freshwater ecosystems worldwide. Our objective was to study C. fluminea’s functional response in terms of feeding behavior and food selectivity, using the natural variation in organic matter (OM) sources that occur in estuarine environments. Using C and N stable isotopes, we identified and quantified the contribution of different OM sources supporting the production of C. fluminea along the salinity gradient occupied in the Minho River estuary (NW-Iberian Peninsula, Europe), where this species presently dominates the benthic macrofauna biomass. We observed a pronounced shift in the quality of OM available for C. fluminea along the estuarine mixing zone. Stable isotope analysis, POM C/N, and phytoplankton contribution estimates based on C:Chl a revealed that POM was largely comprised of terrestrial-derived OM in tidal freshwater stations (TFW) and was increasingly comprised of phytoplankton, a more palatable food source, towards the polyhaline estuary. A similar shift in the isotopic composition along the estuarine mixing zone was observed in C. fluminea, suggesting a shift in food resources. Accordingly, based on a Bayesian stable isotope mixing model, there was an upstream–downstream counter gradient in the contribution to C. fluminea biomass from terrestrial-derived OM (41–64 % in TFW) and phytoplankton (29–55 % in the brackish estuary). Although the majority of the food sources identified were filtered from the water column (70–80 %), reliance on sediment OM and microphytobenthos provided evidence for deposit feeding by C. fluminea. We conclude that C. fluminea has the ability to adapt to environments with low food quality because it can consume terrestrial-derived OM. This can be a competitive adaptation in systems with perennial low food quality such as the Minho River estuary. Moreover, its ability to couple benthic and pelagic environments and terrestrial ecosystems demonstrates a strong potential to alter food web flows in aquatic ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.