Abstract

Abstract Supercritical accretion onto compact objects may drive massive winds that are nearly spherical, optically thick, and Eddington limited. Blackbody emission from the photosphere is the direct observational signature of the wind. Here we investigate whether or not it can explain the soft emission component seen in the energy spectra of ultraluminous X-ray sources (ULXs). Based on high-quality XMM-Newton spectra of 15 ULXs, we find that the soft component can be modeled as blackbody emission with a nearly constant luminosity, and the five known pulsating ULXs (PULXs) in the sample display a blackbody luminosity among the lowest. These are consistent with the scenario that the soft emission originates from the photosphere of the optically thick wind. However, the derived blackbody luminosity for PULXs is significantly above the Eddington limit for neutron stars. A possible explanation is that a considerable fraction of the optically thick wind roots in the inner accretion flow, where the radiative flux could exceed the Eddington limit due to a reduced scattering cross-section or enhanced radiation transfer with magnetic buoyancy. Based on a wind model, the inferred mass accretion rate in these standard ULXs overlaps but is on average lower than that in luminous and very soft X-ray sources, which are also candidates with supercritical accretion. Alternatively, it cannot be ruled out that the soft emission component is a result of the hard component, e.g., via down-scattering in a cool medium, as a weak correlation may exist between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.