Abstract

We analyzed the diversity of bacterial epibionts and trophic ecology of a new species of Kiwa yeti crab discovered at two hydrothermal vent fields (E2 and E9) on the East Scotia Ridge (ESR) in the Southern Ocean using a combination of 454 pyrosequencing, Sanger sequencing, and stable isotope analysis. The Kiwa epibiont communities were dominated by Epsilon- and Gammaproteobacteria. About 454 sequencing of the epibionts on 15 individual Kiwa specimen revealed large regional differences between the two hydrothermal vent fields: at E2, the bacterial community on the Kiwa ventral setae was dominated (up to 75%) by Gammaproteobacteria, whereas at E9 Epsilonproteobacteria dominated (up to 98%). Carbon stable isotope analysis of both Kiwa and the bacterial epibionts also showed distinct differences between E2 and E9 in mean and variability. Both stable isotope and sequence data suggest a dominance of different carbon fixation pathways of the epibiont communities at the two vent fields. At E2, epibionts were putatively fixing carbon via the Calvin-Benson-Bassham and reverse tricarboxylic acid cycle, while at E9 the reverse tricarboxylic acid cycle dominated. Co-varying epibiont diversity and isotope values at E2 and E9 also present further support for the hypothesis that epibionts serve as a food source for Kiwa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.