Abstract

Decrease in leaf growth rate under water deficit can be seen as an adaptive process. The analysis of its genetic variability is therefore important in the context of drought tolerance. Several mechanisms are widely believed to drive the reduction in leaf growth rate under water deficit, namely leaf carbon balance, incomplete turgor maintenance, and decrease in cell wall plasticity or in cell division rate, with contributions from hormones such as abscisic acid or ethylene. Each of these mechanisms is still controversial, and involves several families of genes. It is argued that gene regulatory networks are not feasible for modelling such complex systems. Leaf growth can be modelled via response curves to environmental conditions, which are considered as ‘meta-mechanisms’ at a higher degree of organisation. Response curves of leaf elongation rate to meristem temperature, atmospheric vapour pressure deficit, and soil water status were established in recombinant inbred lines (RILs) of maize in experiments carried out in the field and in the greenhouse. A quantitative trait locus (QTL) analysis was conducted on the slopes of these responses. Each parameter of the ecophysiological model could then be computed as the sum of QTL effects, allowing calculation of parameters of new RILs, either virtual or existing. Leaf elongation rates of new RILS were simulated and were similar to measurements in a growth chamber experiment. This opens the way to the simulation of virtual genotypes, known only by their alleles, in any climatic scenario. Each genotype is therefore represented by a set of response parameters, valid in a large range of conditions and deduced from the alleles at QTLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.