Abstract

Insulin resistance is characterized by high insulin levels and decreased responsiveness of tissues to the clearance of glucose from the bloodstream. This study maintained the diabetes-prone C57BL/6J and obese-resistant A/J mice strains on a high-fat diet for 12 weeks to transcriptionally profile the liver for changes caused by high fat diet. In the 8th week of the experiment, the C57BL/6J mice began exhibiting signs of insulin resistance, while the A/J mice did not show any such indications during the course of the experiment. A regression model of partial least squares between serum insulin measurements and the liver gene expression profile for the C57BL/6J mice on a high-fat diet was constructed in an effort to quantitatively link the physiological measurement with the gene expressions. A series of discriminating genes between high fat and chow fed mice was generated for both the C57BL/6J and A/J strains. These discriminatory genes contain information about the mechanisms responsible for the development of insulin resistance, and the compensation for a high fat diet, respectively. The results identified several genes involved in the development of insulin resistance and serve as a framework for other studies involving other organs affected by this systemic disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.