Abstract

Human milk oligosaccharides (HMOs) are important prebiotic complex carbohydrates with demonstrated beneficial effects on the microbiota of neonates. However, optimization of their biotechnological synthesis is limited by the relatively low throughput of monosaccharide and linkage analysis. To enable high-throughput screening of HMO structures, we constructed a whole-cell biosensor that uses heterologous expression of glycosidases to generate linkage-specific, quantitative fluorescent readout for a range of HMOs at detection limits down to 20μM in approximately 6hr. We also demonstrate the use of this system for orthogonal control of growth rate or protein expression of particular strains in mixed populations. This work enables rapid non-chromatographic linkage analysis and lays the groundwork for the application of directed evolution to biosynthesis of complex carbohydrates as well as the prebiotic manipulation of population dynamics in natural and engineered microbial communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.