Abstract

We study link capacity allocation for a finite buffer system to transmit multimedia traffic. The queueing process is simulated with real video traffic. Two key concepts are explored in this study. First, the link capacity requirement at each node is essentially captured by its low-frequency input traffic (filtered at a properly selected cut-off frequency). Second, the low-frequency traffic stays intact as it travels through a finite-buffer system without significant loss. Hence, one may overlook the queueing process at each node for network-wide traffic flow in the low-frequency band. We propose a simple, effective method for link capacity allocation and network control using on-line observation of traffic flow in the low-frequency band. The study explores a new direction for measurement-based traffic control in high-speed networks. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.