Abstract

Based on neutron wide-angle diffraction and small-angle neutron scattering experiments, we show that there is a correlation between the preparational conditions of amorphous ice structures, their microscopic structural properties, the extent of heterogeneities on a mesoscopic spatial scale and the transformation kinetics. There are only two modifications that can be identified as homogeneous disordered structures, namely the very high-density vHDA and the low-density amorphous LDA ice. Structures showing an intermediate static structure factor with respect to vHDA and LDA are heterogeneous phases. This holds independently from their preparation procedure, i.e. either obtained by pressure amorphization of ice Ih or by heating of vHDA. The degree of heterogeneity can be progressively suppressed when higher pressures and temperatures are applied for the sample preparation. In accordance with the suppressed heterogeneity the maximum of the static structure factor displays a pronounced narrowing of the first strong peak, shifting towards higher Q-numbers. Moreover, the less heterogeneous the obtained structures are the slower is the transformation kinetics from the high-density modifications into LDA. The well known high-density amorphous structure HDA does not constitute any particular state of the amorphous water network. It is formed due to the preparational procedure working in liquid nitrogen as thermal bath, i.e. at about 77K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.