Abstract

The rotation of the physical Earth is far more complex than the rotation of a biaxial or slightly triaxial rigid body can represent. The linearization of the Liouville equation via the Munk and MacDonal perturbation scheme has oversimplified polar excitation physics. A more conventional linearization of the Liouville equation as the generalized equation of motion for free rotation of the physical Earth reveals: 1) The reference frame is most essential, which needs to be unique and physically located in the Earth; 2) Physical angular momentum perturbation arises from motion and mass redistribution to appear as relative angular momentum in a rotating Earth, which excites polar motion and length of day variations; 3) At polar excitation, the direction of the rotation axis in space does not change besides nutation and precession around the invariant angular momentum axis, while the principal axes shift responding only to mass redistribution; 4) Two inertia changes appear simultaneously at polar excitation; one is due to mass redistribution, and the other arises from the axial near-symmetry of the perturbed Earth; 5) The Earth at polar excitation becomes slightly triaxial and axially near-symmetrical even it was originally biaxial; 6) At polar excitation, the rotation of a non-rigid Earth becomes unstable; 7) The instantaneous figure axis or mean excitation axis around which the rotation axis physically wobbles is not a principal axis; 8) In addition to amplitude excitation, the Chandler wobble possesses also multiple frequency-splits and is slow damping; 9) Secular polar drift is after the products of inertia and always associated with the Chandler wobble; both belong to polar motion; 10) The Earth will reach its stable rotation only after its rotation axis, major principal axis, and instantaneous figure axis or mean excitation axis are all completely aligned with each other to arrive at the minimum energy configuration of the system; 11) The observation of the multiple splits of the Chandler frequency is further examined by means of exact-bandwidth filtering and spectral analysis, which confirms the theoretical prediction of the linearized Liouville equation. After the removal of the Gibbs phenomenon from the polar motion spectra, Markowitz wobbles are also observed; 12) Error analysis of the ILS data demonstrates that the incoherent noises from the Wars in 1920-1945 are separable from polar motion and removable, so the ILS data are still reliable and useful for the study of the continuation of polar motion.

Highlights

  • It has long been known from classical mechanics that the Earth rotates like a biaxial [1,2] or slightly triaxial [3,4,5] rigid body

  • The terrestrial reference frame is most crucial, and the selection of a both theoretically and observationally practical reference frame for the study of the rotation of the physical Earth is a most difficult problem. It should be physically located in the Earth, unique, consistent with observation, and always associated with polar motion; i.e., the reference frame should be able to express the Liouville equation as the generalized equation of motion for the rotation of the physical Earth

  • Physical angular momentum perturbation appears as a relative angular momentum arising from motion and mass redistribution about the same terrestrial frame rotating with the Earth relative to an inertial frame fixed in space as the whole system does, and cannot bypass the Earth’s rotation and directly about an inertial frame

Read more

Summary

Introduction

It has long been known from classical mechanics that the Earth rotates like a biaxial [1,2] or slightly triaxial [3,4,5] rigid body. Such a rigid model is not able to fully depict the complexity of the Earth’s rotation. In the Eulerian equation of motion for a rigid Earth in free rotation [1,2], the Earth’s free wobble is due to a slight misalignment between the rotation and major principal axes; an assumed initial condition that does not physically explain, how the major principal axis of a biaxial or slightly triaxial rigid body in stable constant rotation can become misaligned with the rotation axis? A rigid Earth allows no motion and mass redistribution to alter its inertia for a shift of its principal axes; whereas, external torque only forces a precession of the rotation axes

PAN x 10 10
Review of Rigid-Body Rotation
Generalized Equation of Motion
Reference Frame
Matter Perturbation and Relative Angular Momentum
Axial Near-Symmetry and Major Principal Axis
Linearization
Rotation Instability
10. Error Analysis of the ILS Data
11. Conclusion
12. Acknowledgements
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.