Abstract
By employing a novel generalization of the inverse scattering transform method known as the unified transform or Fokas method, it can be shown that the solution of certain physically significant boundary value problems for the elliptic sine-Gordon equation, as well as for the elliptic version of the Ernst equation, can be expressed in terms of the solution of appropriate 2 × 2-matrix Riemann–Hilbert (RH) problems. These RH problems are defined in terms of certain functions, called spectral functions, which involve the given boundary conditions, but also unknown boundary values. For arbitrary boundary conditions, the determination of these unknown boundary values requires the analysis of a nonlinear Fredholm integral equation. However, there exist particular boundary conditions, called linearizable, for which it is possible to bypass this nonlinear step and to characterize the spectral functions directly in terms of the given boundary conditions. Here, we review the implementation of this effective procedure for the following linearizable boundary value problems: (a) the elliptic sine-Gordon equation in a semi-strip with zero Dirichlet boundary values on the unbounded sides and with constant Dirichlet boundary value on the bounded side; (b) the elliptic Ernst equation with boundary conditions corresponding to a uniformly rotating disk of dust; (c) the elliptic Ernst equation with boundary conditions corresponding to a disk rotating uniformly around a central black hole; (d) the elliptic Ernst equation with vanishing Neumann boundary values on a rotating disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.