Abstract

We describe the linear viscoelastic response of monodomains of unentangled nematic liquid crystalline polymers, using a generalized Rouse model. We calculate the dynamic relaxation functions analogous to the Leslie viscosities. As a consequence of the coupling of the macroscopic director orientation n to Rouse relaxation of the chain conformations, we predict: 1) a non-monotonic evolution of the director orientation after a step deformation and continuous tumbling in steady shear for extended chains (with no hairpins), and flow alignment of anisotropic Gaussian chains (with many hairpins), and 2) a phenomenon of “director recoil” in the response of n to a transient magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.