Abstract
We describe a general approach to deriving linear-time logics for a wide variety of state-based, quantitative systems, by modelling the latter as coalgebras whose type incorporates both branching and linear behaviour. Concretely, we define logics whose syntax is determined by the type of linear behaviour, and whose domain of truth values is determined by the type of branching behaviour, and we provide two semantics for them: a step-wise semantics akin to that of standard coalgebraic logics, and a path-based semantics akin to that of standard linear-time logics. The former semantics is useful for model checking, whereas the latter is the more natural semantics, as it measures the extent with which qualitative properties hold along computation paths from a given state. Our main result is the equivalence of the two semantics. We also provide a semantic characterisation of a notion of logical distance induced by these logics. Instances of our logics support reasoning about the possibility, likelihood or minimal cost of exhibiting a given linear-time property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.