Abstract

The time complexity of 1-limited automata is investigated from a descriptional complexity view point. Though the model recognizes regular languages only, it may use quadratic time in the input length. We show that, with a polynomial increase in size and preserving determinism, each 1-limited automaton can be transformed into a linear-time equivalent one. We also obtain polynomial transformations into related models, including weight-reducing Hennie machines (i.e., one-tape Turing machines syntactically forced to operate in linear-time), and we show exponential gaps for the converse transformations in the deterministic case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.