Abstract
A method is developed for calculating second moment properties and moments of order three and higher of the state X of a linear filter driven by martingale noise. The martingale noise is interpreted as the formal derivative of a square integrable martingale with continuous samples. The Gaussian white noise is an example of a martingale noise. It is shown that the differential equations of the mean and correlation functions of the state X developed in the paper resemble the corresponding equations of the classical linear random vibration and coincide with these equations if the input is a Gaussian white noise. The moment equations are derived by (1) the Itô formula for semimartingales and (2) the classical Itô formula applied to a diffusion process whose coordinates include X . An advantage of the second method is use of more familiar concepts. However, this method requires to calculate unnecessary moments and can be applied only for a class of martingale noise processes. Examples are presented to illustrate and evaluate the two methods for calculating moments of X and demonstrate the use of these methods in linear random vibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.