Abstract

Porous conductive elastomer composites are very attractive for designing flexible and air-permeable mechanical sensors for healthcare, while it is challenging to achieve a linear and sensitive electromechanical response over a wide strain range for high-resolution recording of physiological activities and body motions. Here, a scalable strategy is developed to construct porous elastomer composites with a bamboo-shaped heteromodulus microstructure in the pores for the fabrication of linear stretchable strain sensors. Such a spatial heteromodulus microstructure is fabricated via phase separation and selective location of high-modulus phase during melt compounding of elastomers and thermoplastics, together with green etching of the water-soluble plastic in the tricontinuous elastomer composites. The bamboo-shaped heteromodulus microstructure is constructed on the pore struts via the fracture of a high-modulus polymer self-assembled on the pore surface and relaxation recovery of the elastomer matrix after prestretching, which blocks the propagation of cut-through microcracks upon stretching. The composites with super low resistance after in situ growth of silver nanoparticles sustain up to 110% tensile strain with a linear and sensitive electromechanical response, demonstrating potential applications in discriminating respiration status and monitoring snoring breath. This work unveils a new approach to fabricate high-performance air-permeable strain sensors in a simple and scalable way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.