Abstract
Bilinear systems can be viewed as a bridge between linear and nonlinear systems, providing a promising approach to handle various nonlinear identification and control problems. This paper provides a formal justification for the extension of interaction matrices to bilinear systems and uses them to express the bilinear state as a linear function of input–output data. Multiple representations of this kind are derived, making it possible to develop an intersection subspace algorithm for the identification of discrete-time bilinear models. The technique first recovers the bilinear state by intersecting two vector spaces that are defined solely in terms of input–output data. The new input–output-to-state relationships are also used to extend the equivalent linear model method for bilinear system identification. Among the benefits of the proposed approach, it does not require data from multiple experiments, and it does not impose specific restrictions on the form of input excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.