Abstract

In this paper we give an improvement of the degree of the homogeneous linear recurrence with integer coefficients that exponential sums of symmetric Boolean functions satisfy. This improvement is tight. We also compute the asymptotic behavior of symmetric Boolean functions and provide a formula that allows us to determine if a symmetric boolean function is asymptotically not balanced. In particular, when the degree of the symmetric function is a power of two, then the exponential sum is much smaller than $2^n$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.