Abstract
Let interval + kv, interval+ ke, and interval – ke denote the classes of graphs that can be obtained from some interval graph by adding k vertices, adding k edges, and deleting k edges, respectively. When k is small, these graph classes are called almost interval graphs. They are well motivated from computational biology, where the data ought to be represented by an interval graph while we can only expect an almost interval graph for the best. For any fixed k, we give linear-time algorithms for recognizing all these classes, and in the case of membership, our algorithms provide also a specific interval graph as evidence. When k is part of the input, these problems are also known as graph modification problems, all NP-complete. Our results imply that they are fixed-parameter tractable parameterized by k, thereby resolving the long-standing open problem on the parameterized complexity of recognizing interval + ke, first asked by Bodlaender et al. [Bioinformatics, 11:49–57, 1995]. Moreover, our algorithms for recognizing interval + kv and interval–ke run in times O(6k · (n+m)) and O(8k · (n+m)), (where n and m stand for the numbers of vertices and edges respectively in the input graph,) significantly improving the O(k2k· n3m)-time algorithm of Heggernes et al. [STOC 2007; SICOMP 2009] and the O(10k· n9)-time algorithm of Cao and Marx [SODA 2014; TALG 2015] respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.