Abstract

Linear quadratic guidance laws that explicitly enable imposing a predetermined intercept angle are presented. Two such guidance laws are derived, using optimal control and differential game theories, for arbitrary-order linear missile dynamics. The obtained guidance laws are dependent on the well-known zero-effort miss distance and on a new variable denoted zero-effort angle. It is shown that imposing the terminal angle constraint raises considerably the gains of the guidance laws. Theoretic conditions for the existence of a saddle-point solution in the differential game are also derived. These conditions show that imposing the terminal angle constraint requires a higher maneuverability advantage from the missile. The performance of the proposed guidance laws is investigated using a nonlinear two-dimensional simulation of the missile's lateral dynamics and relative kinematics, while assuming first-order dynamics for the target's evasive maneuvers. Using a Monte Carlo study, it is shown that, for the investigated problem, a target can be intercepted with a negligible miss distance and intercept angle error even when the target maneuvers and there are large initial heading errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.