Abstract

This paper introduces a Linear Quadratic Gaussian (LQG) controller for a Single-Ended Primary Inductor Converter (SEPIC). The LQG design is based on merging an integral Linear Quadratic Regulator (LQR) with an offline Kalman Filter (commonly referred to as a Linear Quadratic Estimator (LQE)). The robustness of the LQG controller is guaranteed based on the separation principle. This manuscript addresses the need to use observer-based systems for the fourth-order SEPIC, which needs a sensor reduction as an essential requirement. This paper provides a comprehensive, yet systematic, approach to designing the LQG system. The work validates the convergences of the states in an LQG system to an actual value. Furthermore, it compares the performance of an LQG system with a benchmark Type-II industrial controller by means of a simulation of the switched converter model in the Simulink/MATLAB 2023a environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.