Abstract

Let A be a given m×n real matrix with m≧n and of rank n and b a given vector. We wish to determine a vector x such that $$\parallel b - A\hat x\parallel = \min .$$ where ∥ … ∥ indicates the euclidean norm. Since the euclidean norm is unitarily invariant $$\parallel b - Ax\parallel = \parallel c - QAx\parallel $$ where c=Q b and Q T Q = I. We choose Q so that $$QA = R = {\left( {_{\dddot 0}^{\tilde R}} \right)_{\} (m - n) \times n}}$$ (1) and R is an upper triangular matrix. Clearly, $$\hat x = {\tilde R^{ - 1}}\tilde c$$ where c denotes the first n components of c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.