Abstract

Discriminant feature extraction plays a fundamental role in pattern recognition. In this paper, we propose the linear Laplacian discrimination (LLD) algorithm/or discriminant feature extraction. LLD is an extension of linear discriminant analysis (LDA). Our motivation is to address the issue that LDA cannot work well in cases where sample spaces are non-Euclidean. Specifically, we define the within-class scatter and the between-class scatter using similarities which are based on pairwise distances in sample spaces. Thus the structural information of classes is contained in the within-class and the between-class Laplacian matrices which are free from metrics of sample spaces. The optimal discriminant subspace can be derived by controlling the structural evolution of Laplacian matrices. Experiments are performed on the facial database for FRGC version 2. Experimental results show that LLD is effective in extracting discriminant features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.