Abstract

In a previous article, \cite{Zill3}, we have established linear inviscid damping for a large class of monotone shear flows in a finite periodic channel and have further shown that boundary effects asymptotically lead to the formation of singularities of derivatives of the solution. As the main results of this article, we provide a detailed description of the singularity formation and establish stability in all sub-critical fractional Sobolev spaces and blow-up in all super-critical spaces. Furthermore, we discuss the implications of the blow-up to the problem of nonlinear inviscid damping in a finite periodic channel, where high regularity would be essential to control nonlinear effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.