Abstract

We consider a multitype population-size-dependent branching process in discrete time. A process is considered to be near-critical if the mean matrices of offspring distributions approach the mean matrix of a critical process as the population size increases. We show that if the second moments of offspring distributions stabilize as the population size increases, and the limiting variances are not too large in comparison with the deviation of the means from criticality, then the extinction probability is less than 1 and the process grows arithmetically fast, in the sense that any linear combination which is not orthogonal to the left eigenvector of the limiting mean matrix grows linearly to a limit distribution. We identify cases when the limiting distribution is gamma. A result on transience of multidimensional Markov chains is also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.