Abstract
A new design equation is proposed for the prediction of shear strength of reinforced concrete (RC) beams without stirrups using an innovative linear genetic programming methodology. The shear strength was formulated in terms of several effective parameters such as shear span to depth ratio, concrete cylinder strength at date of testing, amount of longitudinal reinforcement, lever arm, and maximum specified size of coarse aggregate. A comprehensive database containing 1938 experimental test results for the RC beams was gathered from the literature to develop the model. The performance and validity of the model were further tested using several criteria. An efficient strategy was considered to guarantee the generalization of the proposed design equation. For more verification, sensitivity and parametric analysis were conducted. The results indicate that the derived model is an effective tool for the estimation of the shear capacity of members without stirrups (R=0.921). The prediction performance of the proposed model was found to be better than that of several existing buildings codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.