Abstract

Let $M$ be a random matrix in the orthogonal group $\mathcal {O}_n$, distributed according to Haar measure, and let $A$ be a fixed $n\times n$ matrix over $\mathbb {R}$ such that $\mathrm {Tr}(AA^t)=n$. Then the total variation distance of the random variable $\mathrm {Tr}(AM)$ to a standard normal random variable is bounded by $\frac {2\sqrt {3}} {n-1}$, and this rate is sharp up to the constant. Analogous results are obtained for $M$ a random unitary matrix and $A$ a fixed $n\times n$ matrix over $\mathbb {C}$. The proofs are applications of a new abstract normal approximation theorem which extends Stein’s method of exchangeable pairs to situations in which continuous symmetries are present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.