Abstract
Alloyed carbon steels used in ground engaging tools (GETs), such as shovel-teeth, can withstand high working loads, but their wear resistance is inadequate for abrasive operations in the mining industry. Different approaches to engineer protective surfaces on GETs for improving wear resistance have been developed over the years, but the effectiveness of the applied abrasive resistance layer has been limited by the maximum thickness that can be realized reliably. Considering wear requirements for GETs to reach end-of-life without requiring unscheduled maintenance for after-failure repairs, a minimum thickness of 25 mm has been postulated for the abrasive resistance surface layer, which is roughly four times greater than the thickness of overlays currently manufacturable by weld deposition technologies. Thus, in this study, a novel approach for conceiving thick abrasive surface protection layers—that are unlimited in thickness—on GETs is presented. The method involves applying solid-state linear friction welding and was demonstrated to be feasible for joining abrasive-resistant CPM 15V tool steel to an alloyed carbon steel (extracted from a shovel-tooth). After welding, the integrity of the joints was examined microscopically using optical and scanning electron microscopy to understand the microstructural characteristics, as well as through microhardness and tensile testing to evaluate the performance. A high frequency welding condition was identified that provided integral bonding (i.e., without voids and cracking) at the interface between the CPM 15V tool steel and alloyed carbon shovel-tooth steel. In the as-welded condition, the measured hardness profiles across the joints showed minor softening of both base materials in the heat-affected zone just adjacent to the weld center; this was attributed to over aging of the tempered martensite structures of CPM 15V tool steel and alloyed carbon shovel-tooth steel. The maximum tensile strength of the joint (553 MPa) provides evidence for the viability of linear friction welding technology for joining protective surface materials on GETs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.