Abstract

The spectral density for random matrix [Formula: see text] ensembles can be written in terms of the average of the absolute value of the characteristic polynomial raised to the power of [Formula: see text], which for even [Formula: see text] is a polynomial of degree [Formula: see text]. In the cases of the classical Gaussian, Laguerre, and Jacobi weights, we show that this polynomial, and moreover, the spectral density itself, can be characterized as the solution of a linear differential equation of degree [Formula: see text]. This equation, and its companion for the resolvent, are given explicitly for [Formula: see text] and [Formula: see text] for all three classical cases, and also for [Formula: see text] in the Gaussian case. Known dualities for the spectral moments relating [Formula: see text] to [Formula: see text] then imply corresponding differential equations in the case [Formula: see text], and for the Gaussian ensemble, the case [Formula: see text]. We apply the differential equations to give a systematic derivation of recurrences satisfied by the spectral moments and by the coefficients of their [Formula: see text] expansions, along with first-order differential equations for the coefficients of the [Formula: see text] expansions of the corresponding resolvents. We also present the form of the differential equations when scaled at the hard or soft edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.