Abstract

Functional MRI studies have started the hemodynamic responses of the placenta and fetal brain using maternal hyperoxia. While most studies have focused on analyzing the changes in magnitude of fMRI signals, few studies have analyzed the latency and duration of responses to hyperoxia. This paper proposes a linear convolution model of fetal circulation where a chain of responses to maternal hyperoxia are produced in the placenta and fetal brain. Specifically, an impulse response to hyperoxia was modeled as the hemodynamic response function (HRF) which consists of multiple gamma functions. Both time-to-peak and full width at half maximum of HRF were estimated using simulated annealing (SA). A Monte Carlo simulation was carried out to evaluate the performance of the SA-based method for estimating both parameters. Finally, we provided an example of estimating HRFs from fMRI time series of the placenta and fetal brain acquired during maternal hyperoxia in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.